TEMA 6

Difracción

Introducción a la difracción

u

La teoría de Abbe de la formación de imágenes (1873)

v

Ernst Abbe

a) Sección *ac* de una red monoclínica mostrando el espaciado de los planos (100) y (001)

b) Red recíproca a*c* con la misma orientación

Espacio recíproco

Ausencias sistemáticas

<u>Redes F</u> : estarán ausentes todos los puntos de la red recíproca que correspondan a planos con índices *h,k,l* mixtos (pares e impares)

<u>Redes C</u> : estarán ausentes todos los puntos de la red recíproca que correspondan a planos para los cuales h+k sea impar

<u>Redes I</u> : estarán ausentes todos los puntos de la red recíproca que correspondan a planos para los cuales h+k+l sea impar

Los ejes helicoidales y los planos de deslizamiento también imponen condiciones de extinción

Difracción de rayos X

Naturaleza y generación de los rayos X

Wilhem Conrad Röntgen

Laboratorio de Röntgen en la Universidad de Wurtzburg

Max von Laue

Die erste Ronigen-Bunchlenchting eines Knystalls. M.v. Lane

Experimento de Laue Múnich (1912)

Difracción de rayos X por un cristal de esfalerita (ZnS) . Von Laue,1913

Primera difracción de rayos X por un cristal de Sulfato de cobre (Friedrich et al. 1912)

W.H Bragg (1862-1942) W.L. Bragg (1890-1971) Relación entre espaciado interplanar e índices del plano para un cristal triclínico

$$\frac{1}{d^2} = \frac{\left[\frac{h}{a}sen\alpha\right]^2 + \left[\frac{k}{b}sen\beta\right]^2 + \left[\frac{l}{c}sen\gamma\right]^2 + \left(\frac{2hk}{ab}\right)(\cos\alpha\cos\beta - \cos\gamma)}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma} + \frac{\left(\frac{2kl}{ac}\right)(\cos\beta\cos\gamma - \cos\alpha) + \left(\frac{2hl}{ac}\right)(\cos\alpha\cos\gamma - \cos\beta)}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma} + \frac{\left(\frac{2kl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta) + \left(\frac{2hl}{ac}\right)(\cos\alpha\cos\gamma - \cos\beta)}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma} + \frac{\left(\frac{2kl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta) + \left(\frac{2hl}{ac}\right)(\cos\alpha\cos\gamma - \cos\beta)}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma} + \frac{\left(\frac{2kl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta) + \left(\frac{2hl}{ac}\right)(\cos\alpha\cos\gamma - \cos\beta)}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma} + \frac{\left(\frac{2kl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta) + \left(\frac{2hl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta)}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma} + \frac{\left(\frac{2kl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta) + \left(\frac{2hl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta)}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma} + \frac{\left(\frac{2kl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta) + \left(\frac{2hl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta)}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma} + \frac{\left(\frac{2kl}{ac}\right)(\cos\beta\cos\gamma - \cos\beta) + \frac{2hl}{ac}(\cos\beta\cos\gamma - \cos\beta)}{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma} + \frac{2hl}{ac}(\cos\beta\cos\gamma - \cos\beta) + \frac{2hl}{ac}(\cos\beta\cos\gamma$$

W. Lawrence (izq.) y W. Henry (der.) Bragg.

Structure of sodium chloride. After W. L. Bragg (1913). The Structure of Some Crystals as indicated by their Diffraction of X-rays. Proc. Roy. Soc. 89, 248-277.

The Nobel Prize in Physics 1915 was awarded jointly to Sir William Henry Bragg and William Lawrence Bragg "for their services in the analysis of crystal structure by means of X-rays"

- Punto del espacio recíproco → plano hkl
- Punto del espacio recíproco → onda difractada (amplitud y fase)
- Onda difractada → suma de dispersiones atómicas

 f_i^0

Factor de dispersión atómico

 $\phi_i = 2\pi (hx_i + ky_i + lz_i)$

fase

h, k y l índices del plano $x_i, y_i y z_i$ coordenadas fraccionarias del átomo en la celda unidad

circón (4/mmm)

Amplitud de la dispersión de un átomo individual: $f_i = f_i^0 [cos 2\pi (hx_i + ky_i + lz_i) + sen 2\pi (hx_i + ky_i + lz_i)]$

Factor de estructura (combinación amplitud y fase):

$$F_{hkl} = \Sigma f_i^0 \left[\cos 2\pi (hx_i + ky_i + lz_i) + \sin 2\pi (hx_i + ky_i + lz_i) \right]$$

$$I_{hkl} = |F_{hkl}|^2$$

 \downarrow

Espacios recíprocos ponderados

Posición + intensidad

Métodos de cristal único

Zircón eje de rotación = a

Método del polvo

1	6	2	49x 10 10 10 10 10 10 10	3			4				
d 1/11	3.36 100	2.86 95	1.98	3.59 6	HgS Mercury Sulfi	le	ine sym 	na Late 195	(Cinnabar)		
Rad. CuKa ₁ λ 1.5405 Filter Ni Dia. Cut off $1/I_1$ Diffractometer $1/I$ cor. Ref. Swanson et al., NBS Circular 539, Vol. 4, 17-20 (1955)						A b	1/11	hkl	d A	· 1/11	hkl
						3.59 3.359 3.165	6 100 30	100 101 003	1.258 1.248 1.1975	8 4 2	116 213 300
Sys. Hexagonal S.G. P31, 221 (152, 154) a. 4.149 ba co.9.495 A C 2.289						2.863 2.375 2.074	95 10 25	102 103 110	1.1883 1.1787 1.1614	4 4 4	301,206 214 302
a Ref. I	ζ β y Z 3 Dx 8.187 Ref. Ibid.						12 35	111	1.1358	2 4	117 103
ca nωβ 2.905 cy 3.256 Sign +						1.765	20 25	201	1.1047	6	215
2V Ref. D	v D 8.090 mp Color Red Ref. Dana's System of Mineralogy, 7th Ed., Vol. 1					1.679	25	105 006	1.0693	2 4 2	304 221 222 305
Sample from the Fisher Scientific Co. Spect. anal.: <0.1% Al, Ca, Mg, Na; <0.01% Fe, Mn, Si; <0.001% Ag, Cu, Pb. X-ray pattern at 26°C.						1.433	8	203	0.9910	<1	311,208
						1.401	2	115 210	.9859 .9753	4	223 312
for 2 Merch	The sample was annealed in suffer a mosphere at 323 c for 2 hours and cooled slowly. Merck Index, 8th Ed., p. 661.						12 10	211 212,205	.9599 .9503 Plus 6	4 4 reflec	217 224,313 tions.

Ficha de difracción de polvo del cinabrio

Difracción de electrones: microscopia electrónica de transmisión

1.- Patrón de difracción de electrones (espacio recíproco)

La pequeña longitud de onda de los electrones permite que varios puntos del espacio recíproco cumplan (aproximadamente) la ley de Bragg

Imágenes que se pueden obtener con un microscopio electrónico de transmisión (TEM)

4.- Imágenes de contraste de difracción

- Haz directo → imágenes de **campo claro** (Bright field (BF) images).
- Rayos difractados → imágenes de **campo oscuro** (Dark field (BF) images).

Difracción de neutrones

Dispersión inelástica: Parte de la energía de vibración atómica puede transmitirse a los neutrones que entran en el cristal (especialmente cuando la longitud de onda de los neutrones es similar a la de las vibraciones) \rightarrow información sobre las vibraciones de las redes cristalinas.

Dispersión elástica: La dispersión elástica de los neutrones se emplea básicamente de la misma forma que los rayos X.

Fe

Femagne

°C

Fuentes de generación de neutrones

